Code Repository: GitHub - braindecoding/supl
Code Page: Page - braindecoding/oaa
Supplementary Files Repository: GitHub - braindecoding/supl
Supplementary Files Page: Page - braindecoding/supl
The Supplementary Files directory contains two subfolders under the experiments folder:
This folder contains:
Running runvg.bat inside the plot folder generates FID_Result.csv, along with calculations and reconstructed images for each latent variable, intermediate dimension, batch size, and iteration.
After running runvg.bat, the plot folder contains multiple subfolders, each representing different configurations of latent variables, intermediate dimensions, batch sizes, and iterations.
plot/
│── 9_128_10_500/
│── 9_128_10_1000/
│── 9_128_10_1500/
│ ├── plot/
│ │ ├── fig.png
│ │ ├── graph.png
│ │ ├── result.png
│ ├── rec/
│ │ ├── image_0.png
│ │ ├── image_1.png
│ │ ├── image_2.png
│ │ ├── image_3.png
│ │ ├── image_4.png
│ │ ├── image_5.png
│ │ ├── image_6.png
│ │ ├── image_7.png
│ │ ├── image_8.png
│ │ ├── image_9.png
│ ├── score/
│ │ ├── score.csv
│ ├── stim/
│ │ ├── image_0.png
│ │ ├── image_1.png
│ │ ├── image_2.png
│ │ ├── image_3.png
│ │ ├── image_4.png
│ │ ├── image_5.png
│ │ ├── image_6.png
│ │ ├── image_7.png
│ │ ├── image_8.png
│ │ ├── image_9.png
fig.png: A summary figure.graph.png: A graphical representation of results.result.png: The final processed result image.rec/: Stores reconstructed images (image_0.png to image_9.png).
score/: Contains score.csv, which holds the evaluation scores for the generated images.
This structure is repeated for each configuration folder (e.g., 9_128_10_500, 9_128_10_1000, 9_128_10_1500), where the numbers indicate different parameter settings.
Each folder inside plot/ follows this naming format:
K_intermediateDim_batchSize_maxIter/
Where:
9)128)10)500, 1000, 1500)The fidvg.py script is responsible for computing the Frechet Inception Distance (FID) score and organizing the results:
python fidvg.py K intermediate_dim batch_size maxiter
rootfolder = f"{K}_{intermediate_dim}_{batch_size}_{maxiter}/"
K, intermediate_dim, batch_size, maxIter, fid_value
If the script is run with:
python fidvg.py 9 128 10 1000
It will generate a folder:
plot/
│── 9_128_10_1000/
│ ├── plot/
│ ├── rec/
│ ├── score/
│ ├── stim/
And append a line to FID_Results.csv:
9,128,10,1000, <FID Score>
To reduce the size of the supplementary file, the Miyawaki folder contains several sampled results. This folder includes experiments using the Miyawaki dataset, such as:
miawaki/
│── knn/
│ ├── 18_512_40_1500_2.png
│ ├── 18_512_50_500_1.png
│ ├── 18_512_50_500_2.png
│ ├── 18_512_50_1000_1.png
│ ├── 18_512_50_1000_2.png
│ ├── 18_512_50_1500_1.png
│ ├── 18_512_50_1500_2.png
├── FID_Results_Figure.png
├── FID_Results_My.csv
├── FID_Results_Vg.csv
├── FID_Results18.csv
├── FID_Results18.xlsx
├── FID_Results512-1300.csv
├── FID_ResultsKNNmiya.csv
├── FID_ResultsKNNmiya.xlsx
knn/: Contains images representing results from different experimental settings. The naming convention follows:
18_512_50_500_1.png → 18 latent variables, 512 intermediate dimensions, batch size 50, 500 iterations (first sample)Stores result reports, including:
FID_Results_Figure.png: Visualization of FID scores.FID_Results_My.csv: FID results for Miyawaki dataset.FID_Results_Vg.csv: FID results for Van Gerven dataset.FID_Results18.csv/xlsx: General results.FID_ResultsKNNmiya.csv/xlsx: KNN-based FID results for Miyawaki dataset.